Route aggregation in Software-defined Networks

University essay from KTH/Radio Systems Laboratory (RS Lab)

Abstract: Software-defined Networking (SDN) is an emerging trend in communication networks that facilitates decoupling the control and data plane of multilayer switches. A logically centralized controller hosted on a server configures the forwarding tables (flow tables) of switches in order to route the various data flows.  To implement SDN, OpenFlow technology has been adopted by packet switching vendors as it provides increased flexibility for the control and management of a packet switched domain. OpenFlow technology provides flow based switching that is controlled by a network management control application running in an OpenFlow controller. In this thesis work we investigate how an OpenFlow Controller communicates with a legacy network via the OSPF routing protocol, how the size of the OpenFlow network effects the resources (memory and CPU) of a legacy router to whom the controller communicates. Also we examine bandwidth utilization of the link (between the OpenFlow network and legacy router). The main goal of this thesis is to find methods to reduce the consumption of resources of a legacy router. This study shows that the size of OpenFlow network directly affects the usage of the link’s bandwidth, and the memory and CPU usage of a legacy router. Aggregated information from the OpenFlow controller which is sent towards the legacy router can reduce the utilization of these resources. Finally we proposed several algorithms and design models that can be implemented for route aggregation in Software-defined Networks.  Implementation of the solutions suggested in this thesis will allow automatic route aggregation in SDN. ISPs deploying SDN architecture could benefit from the proposed design models and route aggregation solution.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)