3D Parameterized FEM Modelling of a Piston Ring in a Marine Diesel Engine : A simulation approch using FEM

University essay from Umeå universitet/Institutionen för fysik

Abstract:

The piston ring in a marine two-stroke diesel engine operates in demanding conditions, involving high temperatures and pressures. Its main purposes are to seal the combustion chamber of the engine, minimize the frictional contact against the cylinder liner and transfer heat from the piston. The development of new piston ring designs for marine diesel engines is mainly based on engineering knowledge and expertise but is somewhat unstructured.

A new method which may be used to overcome this lack of structure is to simulate the working conditions for the piston ring. This is the main objective of this thesis work, to invent a simulation method which allows accurate and distinct results to be obtained and thereby knowledge about piston ring performance.

The simulation method is based on a three-dimensional geometric model of the piston ring, where the radial geometry should be described by the lathe curve from industry. It should also be implemented and function automatically as a simulation tool. In short terms, the calculated stresses and strains in the material, the contact pressure against the cylinder liner and the piston ring twist should be evaluated. The simulation tool should be able to model two different types of piston ring designs, namely straight cut design and CPR design, and both with optional dimensions.

Validation of the results are performed with a simulation model which uses fewer dimensions, but also utilizes engineering knowledge from the marine industry. In addition to this, some more advanced investigations have been performed in order to demonstrate the capacity and power of the simulation tool.

The simulation method appears to perform well and according to the simple model, but it also shows good prediction in more advanced investigations. For example, piston rings in overheated engines tend to twist more than usual, which could be seen in real investigations, and the behavior is easily recreated with the simulation tool. Also investigations with reduced cross sections, which is well known within high-speed engines, are performed.

The method is executed automatically with the developed simulation tool which is based on ANSYS, a commercial simulation software. This software, that is commonly used in development work, uses a finite element method to solve the problem. The simulation tool is used as an external input which configures the geometry, finite element formulation and the result rendering.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)