FPGA based Eigenvalue Detection Algorithm for Cognitive Radio

University essay from Radio Center Gävle; Avdelningen för elektronik, matematik och naturvetenskap

Abstract: Radio Communication technologies are undergoing drastic demand over the past two decades. The precious radio resource, electromagnetic radio spectrum, is in vain as technology advances. It is required to come up with a solution to improve its wise uses. Cognitive Radio enabled by Software-Defined Radio brings an intelligent solution to efficiently use the Radio Spectrum. It is a method to aware the radio communication system to be able to adapt to its radio environment like signal power and free spectrum holes. The approach will pose a question on how to efficiently detect a signal. In this thesis different spectrum sensing algorithm will be explained and a special concentration will be on new sensing algorithm based on the Eigenvalues of received signal. The proposed method adapts blind signal detection approach for applications that lacks knowledge about signal, noise and channel property. There are two methods, one is ratio of the Maximum Eigenvalue to Minimum Eigenvalue and the second is ratio of Signal Power to Minimum Eigenvalue. Random Matrix theory (RMT) is a branch of mathematics and it is capable in analyzing large set of data or in a conclusive approach it provides a correlation points in signals or waveforms. In the context of this thesis, RMT is used to overcome both noise and channel uncertainties that are common in wireless communication. Simulations in MATLAB and real-time measurements in LabVIEW are implemented to test the proposed detection algorithms. The measurements were performed based on received signal from an IF-5641R Transceiver obtained from National Instruments.  

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)