3D Modelling of the Tejeda Cone-Sheet Swarm, Gran Canaria, Canary Islands, Spain

University essay from Uppsala universitet/Institutionen för geovetenskaper

Abstract: Cone-sheet swarms are magmatic sheet intrusions and part of volcanic plumbing systems and are pathways for magma to the Earth’s surface, where they feed volcanic eruptions. The analysis of cone-sheets provides information on the geometry of the magmatic plumbing system of a volcano and allows to understand processes and dynamics of magma transport. This is important to interpret information during a volcanic crisis and to help reduce risks to humans and infrastructure. In order to create a realistic model, the structure and shape of cone-sheet complexes can be reconstructed in three-dimensional space. Most cone-sheet swarms are not sufficiently exposed to allow such a reconstruction. The Tejeda cone-sheet swarm on Gran Canaria (Canary Islands, Spain), however, is an excellent location to study a cone-sheet complex in great detail, as it is exposed over 15 kmhorizontally and 1000 m vertically. This allows to determine its geometry in 3D space. The felsic deposits of the Miocene Tejeda caldera were intruded by cone-sheets between 11.7 and 7.3 Ma. Schirnick et al. (1999) assumed straight cone-sheets, based on 2D projections, and suggested that the Tejeda cone-sheet swarm is formed by a stack of uniformly dipping, parallel intrusive sheets that converge towards a common, static, laccolith-like source, forming a concentric structure around acentral axis that has the geometry of a truncated cone. This hypothesis was tested in this study, using structural data from Schirnick (1996) as well as additional data collected in the field. Using the software Move™, the extensive data set was visualized and projected in three dimensional space. The underlying magmatic source of the cone-sheets was reconstructed using two different approaches, with the first one based on sets of cross-sections to select intersection points, following an approach prognosed by Burchardt et al. (2013a). To improve the quality of the reconstruction of the magma chamber, a second method was developed using geometric calculations in MATLAB. The results indicate that individual cone-sheets are straight with parallel to slightly fanning dips, which can be steeper in the central part of the cone-sheet complex. They converge towards a common centre, creating a sub-spherical geometry of the source of the cone-sheet complex. Comparison of the two approaches used for the magma chamber reconstruction indicate that the second approach (geometric calculations) produces less uncertainties in data interpretation. The modelling results lead to the proposition of a dynamic model for the emplacement of the Tejeda cone-sheet complex. Cone-sheets would start to intrude from a reservoir situated at about 4500m below sea level that became successively shallower with time.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)