Wind Farms Influence on Stability in an area with High Concentration of Hydropower Plants

University essay from Institutionen för fysik och astronomi

Abstract: The number of large-scale wind farms integrated to the power system in Sweden is increasing. Two generator concepts that are widely used are Doubly-Fed Induction Generators (DFIG) and Full Power Converters (FPC). The study is of a quantitative character and the aim of the Master thesis is to compare DFIG-models with FPC-models integrated in an area with high concentration of hydropower. Then it is possible to examine how the dynamics in the power system change depending on the selection of technology (DFIG or FPC) when connecting a wind farm. The power system is simulated during a summer night, i.e., a low load is connected. The Master thesis covers stability analysis of the power system by using rotor angle stability that are split into small-signal stability and transient stability (time-domain simulations) and finally voltage stability to see how the hydropower generators react when varying the power production in the wind farm. The Master thesis concludes that independently of wind turbine technique, integration of a wind farm has slight impact on the stability in the power system compared to a power system without a wind farm, even though the load is low. Further, an integration of a wind farms affects the reactive power production in neighbouring hydropower plants. Finally, when increasing the size of the wind farm the neighbouring hydropower station consume less reactive power which can induce problem with the voltage stability.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)