Thermo-Physical Properties of Mould Flux Slags for Continuous Casting of Steel

University essay from KTH/Materialvetenskap

Abstract: Due to the high efficiency and productivity of continuous casting process, this method has been the most employed process to produce steel in past decades. The need to improve and optimize the finished product made it essential to gain more knowledge about the process, types of defects that may occur and the reasons for them. Moreover, the solutions for reducing the shortcomings in continuous casting process have been an intriguing subject to study. Many attempts have been done in order to reach this goal. Understanding, determining and optimizing the mould flux slag properties is especially important, since it plays an important and significant role in this process. For this, it is of outmost importance to acquire more knowledge about different properties of mould flux powders. Hence, there has been a world wide effort to measure and model the properties of mould flux properties, such as liquidus and solidus temperatures, heat capacity, enthalpy, thermal expansion, density, viscosity, electrical conductivity, surface tension and thermal conductivity. This thesis presents a brief review on continuous casting process, mould flux powder and its properties and characteristics. Furthermore, it focuses on the thermo-physical properties of mould fluxes. In present work, different industrial mould flux powders have been analyzed to measure their viscosity, break temperature, physical properties such as density, flowablity of powder, slag structure and chemical composition. The experimental data have been compared to some of the most commonly used models such as Riboud model, Urbain model, Iida model and KTH model.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)