Load Forecasting for Temporary Power Installations : A Machine Learning Approach

University essay from KTH/Skolan för informations- och kommunikationsteknik (ICT)

Abstract: Sports events, festivals, construction sites, and film sites are examples of cases where power is required temporarily and often away from the power grid. Temporary Power Installations refer to systems set up for a limited amount of time with power typically generated on-site. Most load forecasting research has centered around settings with a permanent supply of power (such as in residential buildings). On the contrary, this work proposes machine learning approaches to accurately forecast load for Temporary Power Installations. In practice, these systems are typically powered by diesel generators that are over-sized and consequently, operate at low inefficient load levels. In this thesis, a ‘Pre-Event Forecasting’ approach is proposed to address this inefficiency by classifying a new Temporary Power Installation to a cluster of installations with similar load patterns. By doing so, the sizing of generators and power generation planning can be optimized thereby improving system efficiency. Load forecasting for Temporary Power Installations is also useful whilst a Temporary Power Installation is operational. A ‘Real-Time Forecasting’ approach is proposed to use monitored load data streamed to a server to forecast load two hours or more ahead in time. By doing so, practical measures can be taken in real-time to meet unexpected high and low power demands thereby improving system reliability.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)