Spot-Weld Fatigue Optimization

University essay from KTH/Hållfasthetslära (Avd.)

Author: Filip Andersson; Rhodel Bengtsson; [2018]

Keywords: ;

Abstract: The purpose of this thesis project is to develop a methodology that can be used to minimize the number of spot-welds in a mechanical structure, this is done in a reliable manner via optimization methods. The optimization considers fatigue life in spot-welds and also stiffness and eigenfrequency values. The first chapter of this thesis presents a spot-weld fatigue model proposed by Rupp (1995), common FEmodels of spot-welds and also important aspects about structural optimization in general. The second chapter further describes how topology optimization and size (parameter) optimization are applied on a simple multi-weld model with respect to the aforementioned structural constraints. The topology optimization is later used on a full-size car model, while the size optimization is used to optimize the multiweld model by adding an non-linear structural constraint - a crash indentation constraint. The spot-weld fatigue model proposed by Rupp (1995), is also verified by comparing FE results using different FE-models of spot-welds compared to fatigue data by Long and Khanna (2007). Both optimization methods successfully minimize the total amount of spot-welds on the multi-weld model. The topology optimization,accompanied with thegradient based MFD algorithm,minimizes th etotal spot-welds with around 15% and 3% on the multi-weld model and car body respectively. The size optimization, using design of experiments and response surfaces, manage storeduce the number of welds in the multi-weldmodel by 25%. However, with the size optimization the computational time is several orders of magnitude longer-even without the formulation of the crash constraint. The fatiguespot-weld model fares reasonably well compared to the experimental fatigue data, regardless of the FE model of the spot-weld. It is concluded that the ACM model would be recommended based on its compatibility with fatigue and optimization methods, mesh-independence and also other studies have shown its ability to represent stiffness and eigenfrequency correctly.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)