Waste Heat Recovery in Intensive Small and Medium Sized Industries : Case Study - Gästrike Härdverkstad

University essay from Avdelningen för bygg- energi- och miljöteknik

Abstract: In order to keep a high level and to stay competitive in the world market in the future, it is important for the Swedish steel industry to improve their efficiencies continuously and to reduce the energy consumption. In order to realize these goals, the Swedish steel association Jernkotoret was found and by their initiative Triple Steelix was found in 2006 in Berglanden, a significant area for the steel industry. In 2009, the Clean Production Centre was found in Hofors in order to build a cluster of local steel manufacturers, factories and companies. One of those companies is Gästrike Härdverkstad, a small steal heat treatment industry with six employees and about 700.000 tons treated materials every year. The aim for this thesis is to suggest solutions for recovering waste heat and lowering the total energy consumption in furnaces for heat treatment in the case of Gästrike Härdverkstad. Some limitations were necessary to complete the analysis and to come to conclusions. The yearly treated material and energy prices were assumed to be constant and the yearly power consumption was estimated by an extrapolation of a one to five days measurement. Gästrike Härdverkstad is located in Uhrfors, the southern part of Åshammar, a village with 727 inhabitants. There are not any buildings with a possibility to supply heat and there is no district heating in the surroundings. The company has a power consumption of 1.40 GWh/year, of which 65.7% is consumed by the 12 main furnaces. The rest is used by eight seldom used furnaces, devices and auxiliary machines of the support process like fans, pumps, compressor, office heating, and some other. The efficiencies of the main furnaces are between 10% and 20%.The estimated energy consumption of the space heating is about 27 MWh/year, which completely can be covered by the material coolant and the combustion heat of the exhaust gases from the hardening furnaces. Since there are 10 different types of furnaces with different duties and efficiencies, the preheating furnace was taken as an example and compared with a new furnace. According to the needs of Gästrike Härdverkstad, the furnace VAW 60/100-650°C from the company Vötsch was chosen at the cost of 248,827 SEK. The payback time depends on the efficiency. With an efficiency of 40% the payback time would be about 13 years, see Figure 20. After the annealing and ageing, the finished products are cooled down in the building hall by the ambient air. In future, the possibility of preheating the material with the heat of the finished products should be considered. With an efficiency of 30.87%, one preheating furnace could bereplaced, and taken a payback time of 5 years into account; the price of the construction would be allowed to be up to 253,200 SEK.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)