Study of the Preparation of Mesoporous Magnetic Microspheres and Their Applications

University essay from KTH/Industriell ekologi

Abstract:    Treatment of wastewater using magnetic technology is a rising field. In this thesis, the latest research on the subject is reviewed and several adsorbents with different coatings, which impart them unique properties, are discussed. Separation of particles from aqueous solution using magnetic technology is more convenient compared to conventional techniques, such as filtration and centrifugation. The adsorbents described in this thesis are effective for adsorption of several types of contaminants, such as heavy metals and different types of dyes.    Magnetic microspheres were synthesised using porous polystyrene microspheres as template. The microspheres were first sulfonated using chlorosulfonic acid followed by stirring in the presence of ferrous chloride which then was oxidised and magnetic nanoparticles were formed on the surface.    The sulfonated microspheres had a surface area of 420 m2/g and the magnetic 175 m2/g, indicative of Fe3O4 nanoparticles were successfully formed in the pores. The weight fraction of the Fe3O4 nanoparticles in the magnetic microspheres was 33 %.    Adsorption and desorption studies of the cationic dye, methylene blue, using mesoporous magnetic microspheres were performed. The results show that the mesoporous magnetic microspheres have good ability to adsorb methylene blue at low concentrations. In a cycle study the adsorption efficiency were nearly 100 % throughout the study. Using a 6/4 EtOH/H2O with saturated KCl solution the desorption efficiency in the cycle study were about 95 %.      The microspheres were used as carriers for TiO2 in order to overcome the problem with the separation of TiO2 from solution. The TGA results show that the microspheres contained about 12 % of TiO2. The TiO2 coated microspheres were used for the photocatalytic degradation of phenol. However, the TiO2 microspheres did not work. This was a result from that the phenol had too little contact with the TiO2. A possible way of solving this problem could be to decrease the size of the microspheres, thus increase the surface area.    Lysozyme was adsorbed and separated using the porous microspheres. The lysozyme adsorption worked best at pH 9.6, which is the pI for lysozyme. The lysozyme could be extracted from the microspheres by using a pH 13 buffer. Also, by using MeOH/H2O and EtOH/H2O solutions with saturated KCl the lysozyme could be desorbed. An adsorption and desorption mechanism was also presented.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)