Influence of microstructure and proteins on the metal release of micron-sized stainless steel powder particles

University essay from KTH/Materialvetenskap

Abstract: Knowledge on metal release processes from stainless steel powder, which can be potentially inhaled at occupational settings, is essential within the framework of human health and environmental risk assessments. An in-depth knowledge concerning powder history, physical properties of particles (e.g. size, morphology, and active surface area) combined with their chemical properties (such as the chemical composition of the particles and their metal release behavior) is needed for better understanding of the interaction mechanisms between metal powders and humans. So far, limited in vitro and in vivo studies exist that assess the correlation between stainless steel surface properties, protein adsorption effects, and metal release processes. The aim of this study is to add information to fill this knowledge gap through in vitro investigations of protein-induced metal release (iron, nickel, chromium, and manganese) and induced surface changes of five differently sized and/or produced (water-atomized (WA) and gas-atomized (GA)) stainless steel powder particles (three austenitic: AISI 316L, 310B, and 304B; one martensitic: AISI 410L; and one ferritic: AISI 430L) after exposure up to one week into a phosphate buffer saline (PBS) solution of pH 7.2-7.4 containing either lysozyme (LYS) or bovine serum albumin (BSA). The results show that the outmost surface oxide composition of the powders strongly depends on the production method and particle size. Gas-atomized 316L powder particles (with spherical shapes) indicated a high relative manganese content in their surface oxide (more significant in the case of 316L particles sized <4µm), while no manganese compounds were detectable in the surface oxide of water-atomized powders (of irregular particle shapes). Although austenitic stainless steels should present non-magnetic properties, the investigation of magnetic properties indicated that differently sized gas-atomized 316L particles and water-atomized 304B were to some extent ferromagnetic suggesting the presence of ferrite. BSA induced a significant enrichment of chromium in the surface oxide of all investigated powders (especially for ferritic WA430L and austenitic WA316L), except in the case of 316L powders (<4µm) showing no significant change. Metal release studies illustrated that both proteins enhanced the amount of released metal, with a preferential iron release from water-atomized particles and manganese release from gas-atomized powders. BSA-containing medium induced the highest extent of metal release in comparison with other tested biological media (up to 35-fold increase in the case of ferritic 430L particles produced by water atomization). Comparison between the metal release behavior of particulate and massive stainless steel indicated a significantly higher extent of metal released from abraded stainless steel sheets compared with particles, which is most probably an effect of freshly abraded surfaces of the massive metal sheets, not true for the particles with aged surface oxides, along with the presence of higher relative chromium content in the surface oxide.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)