Geometric Scene Labeling for Long-Range Obstacle Detection

University essay from Linköpings universitet/Datorseende; Linköpings universitet/Tekniska högskolan

Abstract: Autonomous Driving or self driving vehicles are concepts of vehicles knowing their environment and making driving manoeuvres without instructions from a driver. The concepts have been around for decades but has improved significantly in the last years since research in this area has made significant progress. Benefits of autonomous driving include the possibility to decrease the number of accidents in traffic and thereby saving lives. A major challenge in autonomous driving is to acquire 3D information and relations between all objects in surrounding traffic. This is referred to as \textit{spatial perception}. Stereo camera systems have become a central sensor module for advanced driver assistance systems and autonomous driving. For object detection and measurements at large distances stereo vision encounter difficulties. This includes objects being small, having low contrast and the presence of image noise. Having an accurate perception of the environment at large distances is however of high interest for many applications, especially autonomous driving. This thesis proposes a method which tries to increase the range to where generic objects are first detected using a given stereo camera setup. Objects are represented by planes in 3D space. The input image is segmented into the various objects and the 3D plane parameters are estimated jointly. The 3D plane parameters are estimated directly from the stereo image pairs. In particular, this thesis investigates methods to introduce geometric constraints to the segmentation or labeling task, i.e assigning each considered pixel in the image to a plane. The methods provided in this thesis show that despite the difficulties at large distances it is possible to exploit planar primitives in 3D space for obstacle detection at distances where other methods fail.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)