Color Features for Boosted Pedestrian Detection

University essay from Linköpings universitet/Datorseende

Abstract: The car has increasingly become more and more intelligent throughout the years. Today's radar and vision based safety systems can warn a driver and brake the vehicle automatically if obstacles are detected. Research projects such as the Google Car have even succeeded in creating fully autonomous cars. The demands to obtain the highest rating in safety tests such as Euro NCAP are also steadily increasing, and as a result, the development of these systems have become more attractive for car manufacturers. In the near future, a car must have a system for detecting, and performing automatic braking for pedestrians to receive the highest safety rating of five stars. The prospect is that the volume of active safety system will increase drastically when the car manufacturers start installing them in not only luxury cars, but also in the regularly priced ones. The use of automatic braking comes with a high demand on the performance of active safety systems, false positives must be avoided at all costs. Dollar et al. [2014] introduced Aggregated Channel Features (ACF) which is based on a 10-channel LUV+HOG feature map. The method uses decision trees learned from boosting and has been shown to outperform previous algorithms in object detection tasks. The rediscovery of neural networks, and especially Convolutional Neural Networks (CNN) has increased the performance in almost every field of machine learning, including pedestrian detection. Recently Yang et al.[2015] combined the two approaches by using the the feature maps from a CNN as input to a decision tree based boosting framework. This resulted in state of the art performance on the challenging Caltech pedestrian data set. This thesis presents an approach to improve the performance of a cascade of boosted classifiers by investigating the impact of using color information for pedestrian detection. The color self similarity feature introduced by Walk et al.[2010] was used to create a version better adapted for boosting. This feature is then used in combination with a gradient based feature at the last step of a cascade. The presented feature increases the performance compared to currently used classifiers at Autoliv, on data recorded by Autoliv and on the benchmark Caltech pedestrian data set.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)