Exploring the effects of state-action space complexity on training time for AlphaZero agents

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: DeepMind’s development of AlphaGo took the world by storm in 2016 when it became the first computer program to defeat a world champion at the game of Go. Through further development, DeepMind showed that the underlying algorithm could be made more general, and applied to a large set of problems. This thesis will focus on the AlphaZero algorithm and what parameters affect the rate at which an agent is able to learn through self-play. We investigated the effect that the neural network size has on the agent’s learning as well as how the environment complexity affects the agent’s learning. We used Connect4 as the environment for our agents, and by varying the width of the board we were able to simulate environments with different complexities. For each board width, we trained an AlphaZero agent and tracked the rate at which it improved. While we were unable to find a clear correlation between the complexity of the environment and the rate at which the agent improves, we found that a larger neural network both improved the final performance of the agent as well as the rate at which it learns. Along with this, we also studied what impact the number of MonteCarlo tree search iterations have on an already trained AlphaZero agent. Unsurprisingly, we found that a higher number of iterations led to an improved performance. However, the difference between using only the priors of the neural network and a series of Monte-Carlo tree search iterations is not very large. This suggest that using solely the priors can sometimes be useful if inferences need to made quickly.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)