Investigation of How Different Fat Systems and Other Ingredients Affect the Properties of Whipping Creams Based on Vegetable Fat

University essay from Institutionen för kemi och biomedicin (KOB)

Abstract: Whipping creams are oil-in-water emulsion which by whipping can be formed to a foam by the incorporation of air into the system. Traditionally whipping creams are made out of milk but today imitation whipping creams based on vegetable fat has gained a large share of the marked due to their many benefits compared to traditionally whipping creams. Imitation whipping creams are both cheaper and more flexible than traditionally creams. By vary the characteristics of the fat system and the cream recipe the properties of the imitation creams can be adapted to fit the purpose of a specific product. The aim of this thesis was to increase the understanding of how different types of fat systems and other ingredients affect the properties of imitation whipping creams based on vegetable fat. This was done by studying three vegetable fat systems with different physicochemical properties. The properties of the fat systems were characterized and the three fat systems were then used for making different imitation whipping creams. The properties of the creams were characterized and the properties of the fat systems and the creams were assessed and compared with each other. The study showed that the fat characteristics that generally seem to have the highest impact on the properties of whipping creams are the structure, the solid fat content and the crystallization temperature of the fat. A fat solution with a hard structure, a high crystallization temperature and a high solid fat content at a wide range of temperatures overall seem to provide the whipping creams with the best properties. This as these fat properties provide the creams with a high foam stability, a high overrun and a short whipping time. This study has also shown that other ingredients than the fat systems provide the creams with diverging properties. This is best shown by the results of the freeze-thaw stability which indicate that a recipe with a high amount of sugar seem to provide the whipping creams with good freeze-thaw stability. Other properties of the whipping creams also seem to be very much influenced by other ingredients than the fat systems but further studies are needed to provide clarity to the complexity of the interplay of the ingredients in whipped creams.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)