Solar Photovoltaic Thermal Collectors and Ground Source Heat Pumps for Commercial Buildings : Case study in Sweden

University essay from KTH/Skolan för industriell teknik och management (ITM)

Abstract: In order to reduce emissions from the building sector, which stands for than a fifth of the global energy consumption today, efficient and fossil free heating and cooling systems are of importance. This study investigates the combination of solar photovoltaic thermal collectors and ground source heat pump systems in order to regenerate energy to the ground in combination with free cooling. Research questions investigated was how techno-economically efficient a system with photovoltaic thermal collectors, ground source heat pumps and free cooling in a commercial building is. Moreover, the study evaluates what benefits and challenges such system can have. In addition, Polysun as a modeling tool was evaluated for modeling a system includingthese components. Polysun was used as a model tool to first set up a replication of an existing system in TRNSYS provided by researchers at KTH. The model was then scaled and adjusted with parameters to represent a commercial building using free cooling from Vasakronan, a Swedish property company. Photovoltaic thermal collectors were added to the model of the existing building, with two different configurations, and the heating and cooling demand of the building was varied. The results showed that a configuration with photovoltaic thermal collectors added after the evaporator side of the heat pump generated more energy to the system compared with an installation before the evaporator side of the heat pump. The possibilities of free cooling decreased with increasing number of solar collectors, due to the rise of temperature in the ground. From an economic perspective, photovoltaic thermal collectors are more expensive than photovoltaic modules, since it has an additional cost for the hydraulic system that depends on the building. However, photovoltaic thermal collectors also provide thermal energy that can help balancing borehole systems and reduce the risk for a need of additional drilling. The study performed an uncertainty and sensitivity analysis of the results, showing that the electricity price is the most sensitive parameter to the net present value of investing in photovoltaic thermal collectors. With the electricity price assumed in this study, the net present values were positive for all cases for the given interest rate and lifetime of 25 years. It was also concluded that the modeling tool Polysun has a user friendly interface where energy systems easily can be modeled. In terms of borehole configurations, there is a lack of modeling alternatives which resulted in unexpected temperature rises in the ground for the model.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)