Energy optimization of pulp drying, Södra Cell Värö :  

University essay from KTH/Kemiteknik

Abstract: The degree project was done at Södra Cell Värö with the purpose to investigate how the use of energy for pulp drying in a pulp dryer could be made more effective to decrease the energy consumption or increase the capacity. The pulp dryer is one of the machines that consumes the most energy at SCV. The air that dryes the pulp is heated by low pressure steam, and since the amount low pressure steam was limited, the purpose with the project was to investigate how the low pressure steam best could be used. If the drying capacity could be improved it could enable for an increase in production or a decrease low pressure steam consumption. The task was divided into: 1. Analysis of steam and condensate flows connected to the pulp dryer. Can they be adjusted to improve the drying capacity? 2. Investigation of possible sectors of application for hot air flows from vacuum pumps. 3. Investigation of the condensate system. Can condensate and flash steam be used in a better way to provide more steam to the pulp dryer? For task 1, air and energy balances were made ove the pulp dryer, then temperature, flow and moisture content were measured for all air flows in and out. To investigate how the consumption low pressure steam in the pulp dryer depends on the air flows in to the pulp dryer, tests were made where the rotation speed for the fans and the temperature for the air were varied. The result of measuring the air balance over the pulp dryer was that the same amount air was going in and out, which means that all the air was going in to the dryer preheated. The energy balance over the thermal recycling system showed that 40 % of the energy in outgoing air was being reused. Increasing the rotation speed from 750 rpm to 1000 rpm was favourable when the production was high. Increasing the temperature of the air in to the pulp dryer showed that the consumption low pressure steam decreased. Recommended rotation speeds: December – february: 1000 rpm, all levels of production mars – november: 1000 rpm for high production (over 3 bar low pressure steam to pulp dryer) 750 rpm for low production (below 3 bar low pressure steam to pulp dryer) For task 2, temperature, flow and moisture content were measured for all air flows out from the vacuum pumps. The air flows out from the vacuum pumps had a temperature of 40-50 °C, which was too low to be used for preheating of air to pulp dryer. For task 3, a mapping of the condensate system including all steam and condensate flows connected to the pulp dryer was made. The mapping was made in AutoCAD. Since the experiment with increased temperature of the air in to the pulp dryer showed that an increase in temperature caused the consumption low pressure steam to decrease, calculations of how much more the consumption low pressure steam could be decreased by switching to steam of a higher pressure for preaheating the drying air. By using only steam of higher pressure for air preheating, the amount available low pressure steam to the pulp dryer could be increased with 6 tonnes/h.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)