Investigating the Use of Deep Learning Models for Transactional Underwriting

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: Tabular data is the most common form of data, and is abundant throughout crucial industries, such as banks, hospitals and insurance companies. Albeit, deep learning research has largely been dominated by applications to homogeneous data, e.g. images or natural language. Inspired by the great success of deep learning in these domains, recent efforts have been made to tailor deep learning architectures for tabular data. In this thesis, two such models are selected and tested in the context of transactional underwriting. Specifically, the two models are evaluated in terms of predictive performance, interpretability and complexity, to ultimately see if they can compete with gradient boosted tree models and live up to industry requirements. Moreover, the pre-training capabilities of the deep learning models are tested through transfer learning experiments across different markets. It is concluded that the two models are able to outperform the benchmark gradient boosted tree model in terms of RMSE, and moreover, pre-training across markets gives a statistically significant improvement in RMSE, on a level of 0.05. Furthermore, using SHAP, together with model specific explainability methods, it is concluded that the two deep learning models’ explainability is on-par with gradient boosted tree models.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)