Sensorless Control of Brushless DC Motor in Hydraulic Application

University essay from Lunds universitet/Institutionen för reglerteknik

Author: Martin Djup; Elias Allar; [2015]

Keywords: Technology and Engineering;

Abstract: In this master thesis we have studied the possibilities of implementing and controlling the speed of a brushless DC motor in an hydraulic application developed by BorgWarner TorqTransfer Systems AB. The hydraulic application is a coupling that give vehicles intelligent all-wheel drive. Today, the hydraulic application uses hydraulic pressure controlled by an ordinary DC motor to produce the all-wheel drive. The purpose of this thesis was to test if the DC motor could be substituted to a brushless variant by looking at different ways of controlling the speed of the brushless motor and evaluate its possibilities. The controllers were tested and evaluated by constructing a model of the brushless DC motor, together with different controllers, in Simulink. Two kinds of controllers were implemented and tested in Simulink. The first one was field-oriented control with field weakening, and the second one was sixstep commutation. Field-oriented control is a very computationally heavy method compared to the six-step commutation which is one of the simplest ways to control a brushless DC motor. What makes the control implementation a little bit harder is that there can be no angle- or speed sensors involved, so both control methods need to be sensorless. The field-oriented control with field weakening was made sensorless with a sliding mode observer and the six-step commutation was made sensorless via back-EMF sensing. The results show that the alternative that seems to have the upper hand is the field-oriented control, even if it may be harder to implement. It also shows that if some more work is put on the control design, the six-step commutation may also be a good candidate. Overall, this thesis shows that it is theoretically possible to implement a brushless DC motor in the hydraulic application.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)