Increased Traffic Loads on Swedish Highway Bridges : A Case study of the bridge at highway interchange Värö

University essay from Luleå tekniska universitet/Institutionen för samhällsbyggnad och naturresurser

Abstract: The Swedish government is planning to increase the maximum vehicle gross load regulations on parts of the national roads from the present 60 t, for the load carrying capacity class BK1, to 74 t, for the proposed new load carrying capacity class BK4. The initial implementation of the new load carrying capacity class for 74 t vehicles will only regard major highways and important roads, however, at a later stage the plan is to implement the new BK4 class on the full current BK1 road network. The biggest obstacle which arises when implementing these increased traffic loads is insufficient load carrying capacity for the bridges on the road network.   Thus, the objective of this thesis is to examine and analyze the effects of the increased traffic loads on Swedish road bridges. In order to identify the structural effects of the load increase, and draw general conclusions regarding the effects on the bridge network as a whole, a case study with load carrying capacity calculations is carried out on a two-span concrete slab fram bridge at a highway interchange in Värö in western Sweden. The bridge is classified as critical by Trafikverket. The load carrying capacity calculation is carried out using the Swedish standards, in which maximum load values for the axle load, A, and the bogie load, B, is calculated.   The load effects acting on the bridge are calculated using the finite element software BRIGADE/Standard, with input traffic A and B loads amounting to 12 t and 21 t respectively for the new BK4 class and to 12 t and 18 t respectively for class BK1. In addition to the load carrying capacity calculations with BK4 traffic loads, a comparison is carried out between the results obtained when using the axle- and bogie loads from the BK1 versus the BK4 load carrying capacity class in the load carrying capacity calculations.   The load carrying capacity calculations performed on the studied bridge shows that the capacity of the bridge, both in regards to moment and shear force, is insufficient to meet the new, increased, BK4 A/B – requirements. The critical A/B – values for the whole bridge are 17 t and 18 t respectively, to be compared with the required 12- and 21 t limit for the new BK4 load carrying capacity class, thus, making the load carrying capacity of the bridge inadequate. The critical A/B – values appear for the longitudinal shear force load case at the point where the shear force reinforcement over the column support ends. Moreover, the difference between the results obtained when using the BK1 versus the BK4 traffic loads in the calculations were found to be negligible.   Due to the differing properties and characteristics of each individual bridge on the Swedish road network it is difficult to make general statements regarding the effects of the increased traffic loads on the bridge network as a whole. Specific load carrying capacity calculations will need to be performed on each individual bridge in order to evaluate its capability to withstand the new increased BK4 traffic load. However, capacity calculations regarding the BK1 load carrying capacity class can, with sufficient accuracy, be used to evaluate the capability of a bridge to withstand the increased traffic loads in the BK4 load carrying capacity class, thus, making it easier to evaluate the strengthening needs for the bridge network as a whole.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)