Measuring material properties of thin films with DIC and tearing test of laminate

University essay from Blekinge Tekniska Högskola/Institutionen för maskinteknik

Author: Peter Nilsson; [2017]

Keywords: DIC; Thin polymer films; Laminated tearing;

Abstract: Thin polymer materials are today widely used in industry and production. An ordinary food package can have around six different layers of materials laminated together to obtain the desired protection. To obtain an efficient usage of these materials simulations are often required. But the simulations require precise and good material models and properties. To obtain these properties through standard tests are difficult as normal strain gauges or extensometers can’t be used. Much research has been done on this kind of material. But still, the knowledge of the behaviour in certain cases is limited. One such area is the tearing of a laminated material.   The first objective of the work is to test a new measurement method, Digital Image Correlation (DIC), for thin polymer films and test if the method is applicable. DIC is a non-contact measurement technique that measure the deformation of a stochastic pattern. The strain is then calculated from this deformation. These strains can then be used to obtain material properties and behaviour. The second objective is to test the tearing behaviour of a laminate.   The material used is a laminate between a PET (100 μm) and LDPE (25 μm) film. When testing the single layers they were carefully delaminated with a plexiglass staff. As the material can be anisotropic the materials were tested in five directions: Machine Direction (MD); 22,5˚; 45˚; 67,5˚ and Cross Direction (CD). The work and tests were performed at BTH Campus Gräsvik.   An experimental setup for DIC with the usage of chalk spray and backlight was tested. Five tests were performed with and without DIC pattern. It was calculated that the DIC specimens were within standard deviation of the reference tests. GOM Correlate was used to evaluate the strains and visualise the distribution. The strains obtained were also used to calculate the true stress of the specimens and estimate the Poisson’s ratio.      Through testing it was concluded that the tearing of the laminate led to delamination in one of the legs. The delamination always appears in the leg where the LDPE film will experience tensile forces. The crack also angels towards 45˚. By testing single layers it was found that the PET film angles when teared, likely caused by the anisotropy of the material.      An experimental setup for the use of DIC for thin polymer has been developed. This method can be used for future measurements and improvement of material models. The behaviour of laminated tearing was observed and some conclusions could be drawn about its behaviour. However, a lot more work is required on this subject.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)