Micromechanical Investigation of the Effect of Refining on the Mechanical Properties of the Middle Ply of a Paperboard.

University essay from KTH/Hållfasthetslära (Inst.)

Abstract: Optimized fiber utilization is crucial to the process efficiency and profitability in paper and board making. The fibers can be developed in a refining process in order to reach a desired quality level. Refining causes a variety of simultaneous structural changes to the fibers such as internal fibrillation, external fibrillation and fines formation that contribute in different ways to improve the sheet consolidation and enforce bonding between fibers. This increases the strength, which is one of the quality parameters of paper. Three grades of refining are studied. Microscopy of the pulps shows that the fines are not a homogeneous fraction. However, in analyzing SEM images of the handsheet surfaces, fibrillar fines and their bundles are observed to form links between neighboring fibers which can reinforce the network and the bond regions. The fiber characterization method by FiberLab only captures trends in changed fines content in the pulps and these are underestimations since the instruments optical resolution is limited in characterizing fibrillar fines. SEM images of the cross sections of the sheets along with thickness measurements show that increased grade of refining causes a densification of the sheets. Tensile tests show that refining results in a significant increase in tensile strength and stiffness but a more modest increase in strain at break. A 3D fiber network model is built with a deposition technique according to experimental results. Introducing fines in the same way as fibers and increasing the amount of fibrillar fines does not affect the thickness significantly. The densification is instead captured either by changing the width-to-height ratio of the fiber cross sections or by changing the flexibility of the fibers through the so-called interface angle, both having a large impact on the thickness. But SEM images suggest that the width-height-ratio did not reveal a significant change between the three grades of refining. The effect of refining on the mechanical properties is studied numerically using micromechanical simulations which assist interpretation of experimental results. The FE network simulations show that the thickness change alone cannot explain the increased stiffness observed in physical experiments. The addition of fines fraction modelled to capture the fibrillar fines observed in SEM images proved to have a large impact on stiffness comparable to that of experiments. Thus the increased stiffness is partly due to increased number of contacts after densification and partly due to the addition of fines.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)