WEAR RESISTANT MULTI FUNCTIONAL POLYMER COATINGS

University essay from Luleå tekniska universitet/Institutionen för teknikvetenskap och matematik

Abstract: This study aims to develop coatings which show wear resistant behaviour along with multiple functions such as improved ice adhesion, better freezing delay etc which help in improving the effectiveness of the wind turbine efficiency. The significance of anti-icing/de-icing solutions for wind turbines is emphasized since ice accretion can cause serious issues in generation of power and might lead to damage of blades. The use of active and passive anti-icing/de-icing technologies in wind turbine blade applications is reviewed. The discrepancy between passive anti-icing, which depends on surface treatment, coatings, de-icing fluids and active anti-icing, which uses heating devices, sensors such as actuators, transducers, is explored along with the current challenges in industry. In this study we’ve developed interesting methods for improving the anti-icing/de-icing capabilities of wind turbine blades by using gelcoat coatings in which are filler particles (boron nitride and graphene) and oils (vegetable and paraffin oil) are incorporated. Evaluating the impacts of type of fillers, oils, their concentrations on anti-icing efficacy, as well as the prospects for this technique to enhance wind energy production's reliability and productivity will be explored. In summary, this study aims to develop multi-functional polymer coatings for anti-icing/de-icing application in wind turbine blades. The coatings with boron-nitride and graphene showed an increase in the surface roughness and contact angles, while there’s no change in the chemical composition in comparison with pure gelcoat. The thermal conductivity of the coatings was increased with addition of fillers. For the wear test, the operating parameters chosen are a load of 5N and 1Hz frequency of slider, which is run for a duration of 10 min. The COF for both the coatings is lesser than baseline coatings whereas graphene provided better wear resistance. The hardness was increased for boron-nitride coatings and it remained almost same for graphene coatings. The ice adhesion strength, freezing delay and thermal analysis (TGA) for these coatings showed better performance than pure gelcoat. Whereas for coatings with vegetable and paraffin oils, the contact angles were increased and surface roughness was increased in case of paraffin oil coatings whereas it reduced for vegetable oil coatings. Both the coatings offered better wear resistance and reduced COF, whereas the hardness was reduced. The ice adhesion strength and freezing delay improved drastically and are much better than both pure gelcoat as well as coatings with boron-nitride and graphene. There is slight increase in the glass transition temperature than pure gelcoat coating.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)