Trends in high peak flow generation across the Swedish Subarctic

University essay from Stockholms universitet/Institutionen för naturgeografi

Abstract: There is growing concern for increased frequency of extreme events due to several severe floods and droughts occurring globally in recent years. Improving knowledge on the complexity of hydrological systems and interactions with climate is essential to be able to determine drivers and predict changes in the future. This is especially true in cold regions such as the Swedish Subarctic. This thesis explored changes in high peak flows and linked trends to climate. Trend analyses were applied on 18 catchments in the Swedish Subarctic over their entire periods of record and a common period (1990-2013) among the data to explore changes in flood magnitude, flood occurrence, mean summer flow, snowmelt onset and center of mass. Further, a flood frequency analysis was applied using the extreme value type I (Gumbel) distribution and selected flood percentiles were tested for stationarity. The results show the complexity of the hydrological system and interactions with climate. No clear overall pattern could be determined suggesting that changes are happening at catchment scale. Indications for a shift in flow regime from snowmelt-dominated to rainfall-dominated are evident with all significant trends pointing towards lower flood magnitudes in the spring flood, earlier flood occurrence and snowmelt onset, and decreasing mean summer flows. The shift in flow regime suggests that air temperature is more clearly reflected in streamflow than precipitation in the Swedish Subarctic. Decreasing trends in flood magnitude and mean summer flows are suggestive of permafrost thawing, which agrees with the increasing trends in the annual minimum flow. Long streamflow records can further link variability in streamflow to multidecadal atmospheric circulations over the North Atlantic. Most evident are changes towards lower mean summer flows (ten catchments significant at a 95% confidence interval) and earlier snowmelt onset (eight catchments significant). Trends in the selected flood percentiles show indications towards an increase in extreme events over the entire period (significant for four catchments), with all significant trends being positive. Over the common period, no pattern is notable and the sensitivity of trend analyses is evident.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)