Closure of Lilla Bredsjön Tailings Dam : an Evaluation of the Long-Term Dam Safety Measures

University essay from KTH/Vattendragsteknik

Abstract: The mining industry contributes to enormous amounts of waste all over the world, which places high demands on tailings dams. In Sweden, there are strict regulations regarding the management and treatment of tailings dams, but some dams that were built before these regulations existed still pose a threat to the environment. Lilla Bredsjön in Dalarna, Sweden, is an example of an old tailings dam that has not been treated properly. Boliden, which is the owner of the dam, and the county board of Dalarna are currently in meetings regarding the responsibilities of old polluted sites in Garpenberg, where Lilla Bredsjön is included. This study aims to investigate possible remediation measures of the dams at Lilla Bredsjön in order to achieve long- term stability upon closure of the facility. Lilla Bredsjön is 350 000 m2 large and contains three impoundments; dam 1 to the east, dam 2 to the south and dam 3 to the north. Dam 1 is seven meters at its highest point whereas dam 2 and 3 both are three meters high. All of the dams are classified to a consequence level of 3, meaning that the consequences in case of a failure would be negligible. They are built using the centerline method with impermeable cores of moraine. The tailings are partly covered with sludge mixed with biomass ash, but no proper closure method have been implemented. A geotechnical investigation was conducted to obtain more information about the geometry, construction and foundation of each dam. It could be observed that dam 1 consisted of a moraine core and support fill, both constructed using the Christmas tree principle. Dam 2 consisted of a coarse and fine filter in the upstream part of the dam, whereas the rest of the dam consisted of a moraine core. Dam 3 consisted of tailings and a moraine core, and was like dam 1 also constructed using the Christmas tree principle. The downstream slopes of all dams are moreover very steep with slope angles of approximately 34o. Seepage and stability calculations were therefore performed in the software GeoStudio. In GeoStudio, two different analysis tools were used; SEEP/W to calculate seepage and SLOPE/W to calculate slope stability. Four hydraulic load cases were analyzed in the calculations: present conditions, flooded conditions, potential maximum seepage and present conditions with lower permeability of the tailings. The result shows that all of the dams are unstable in their present con- ditions, both with original and lower permeability of the tailings, as well as at flooded conditions. The required safety factor is however fulfilled at potential maximum seepage. The stability highly depends on the pore pressure inside the dams, which in turn depends on the choice of closure method. Based on the result from the stability calculations it can be concluded that if a dry cover is chosen as the closure method, it will probably be enough to reinforce the existing dams to achieve long-term stability. If, on the other hand, a raised groundwater level is chosen, more extensive solutions in terms of for example completely new impoundments directly downstream of the existing ones are most likely needed. Before a decision regarding the closure method is taken, it is hence very difficult to come to a conclusion regarding suitable remediation measures of the dams.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)