Load Effect Modelling in Fatigue Design of Composite Bridges : An assessment of Fatigue Load Models 3, 4 and 5 according to SS-EN-1991-2 Actions on Structures – Part 2: Traffic loads on Bridges

University essay from KTH/Stålbyggnad

Abstract: At the turn of 2010/2011, Sweden went from designing structures according to nationaldesign codes to the new European standards Eurocode. For bridge engineers, this implieda change from a combination of BRO 2004 and BSK 07 to the Eurocode as the maindocuments, complemented by national documents such as TRVK Bro 11. The normtransition did not only change the calculation methods, but also turned a phenomenonthat never was of great importance for road bridges before into something that could limitthe carrying capacity of the structure. This phenomenon is called fatigue, i.e. repeatedload cycles, where each load is much lower than the ultimate limit state capacity, thatfinally results in collapse. This master thesis investigates why fatigue is significant in the design today. This is donethrough a comparison of how the new and old regulations assesses fatigue. A bridge builtin 2011, designed by ELU Konsult AB according to the old regulations, was modelledin the finite element program LUSAS. Several lorry crossings from different fatigue loadmodels were then simulated. The output from LUSAS was then used to calculate theutilization ratios for three critical points along the bridge. The result indicates that both regulations give rise to similar stress ranges, i.e. thedifference between the maximum and minimum stress obtained during a crossing. Thedifferences between the regulations are instead within the fatigue calculations, where themajor difference is the number of lorries crossing the bridge during its lifetime. Theutilization ratio according to the old regulations for the worst exposed point is 27.0 %,corresponding to 9.13 daily crossings by heavy lorries, which is the maximum numberof daily crossings provided by BRO 2004. The lowest utilization ratio according tothe Eurocode is 70.0 %, calculated for 137 daily crossings which is the lowest amountof crossings allowed. An interpretation of the Eurocode, which allows usage of fatigue loadmodel 5 even for smaller bridges, results in a utilization ratio of 56.0% which correspondsto 90.0 daily crossings, i.e. lower than the other fatigue load models provided by theEurocode but clearly above the old regulations. The conclusion is that an alternative way of deciding the number of crossings shouldbe provided by the Eurocode. Today, the classification consists of four steps, which arevery rough. Instead, a proposal is given in this thesis which advocates usage of a linearfunction for deciding the number of design crossings based on the number of daily crossingsby lorries. The proposed alternative design method is between the two regulations withrespect to daily crossings and utilization ratio.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)