Mechanical Transfer of Optically Trapped Nanoparticle

University essay from KTH/Skolan för elektro- och systemteknik (EES)

Author: Amir Torki; [2016]

Keywords: ;

Abstract: In this project, a mechanical system for transferring a silica nanoparticle is designedand implemented. This system is based on a mobile optical trap which enables 3Dmanipulation of a nanoparticle in high vacuum condition. The silica nanoparticle withdiameter 177nm is trapped at ambient pressure in first chamber called loading chamberat wavelength 1565nm. Then the pressure of loading chamber is reduced by vacuumpump to 10−5−10−6mbar. The second chamber is always kept in high vacuum. There isa vacuum valve between two chambers which isolates them from each other. As we openthe valve, the pressure inside the both chambers would be equilibrated. The trappednanoparticle is transferred to the second chamber with the distance around 20-25cm inless than 20-30 seconds with macroscopic scale resolution. During this long range transfer,we are able to perform microscopic transfer due to the presence of three nanopositionersaligned with three axes. No feedback system is used to stabilize particle motion for lowerpressure.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)