Phase and Intensity Monitoring of the Particle Beams at the ATLAS Experiment

University essay from Institutionen för fysik, kemi och biologi

Abstract: At the ATLAS experiment at CERN’s Large Hadron Collider, bunches of protons will cross paths at a rate of 40 MHz, resulting in 14 TeV head-on collisions. During these interactions, calorimeters, spectrometers and tracking detectors will look for evidence that can confirm or disprove theories about the smallest constituents of matter and the forces that hold them together. In order for these sub-detectors to sample the signals from exotic particles correctly, they rely on a constant phase between a clock signal and the bunch crossings in the experiment. On each side of the detector, 175 m away from the interaction point, electrostatic button pick-up detectors are installed along the accelerator ring to monitor the beam. A model describing how these detectors function as beam information transducers is constructed and analyzed in order to understand the signal. The focus of this thesis is the design, implementation and testing of a system that uses this signal to monitor the phase between the clock signal and the arrival time of the bunches in the center of the detector. In addition, the system extracts information about the proton beam structure as well as the individual bunches. Given the interaction rate and the complexity of the processes the experiment wants to study, vast amounts of data will be generated by ATLAS. To filter out well-understood phenomena, a trigger system selects only the most interesting events to be saved for further offline analysis. A proposal for how the signals from the button pick-ups can be used as input to the trigger system is therefore also presented.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)