Ionospheric model of comet 67P including the effect of solar EUV attenuation

University essay from Uppsala universitet/Institutionen för fysik och astronomi; Uppsala universitet/Institutet för rymdfysik, Uppsalaavdelningen

Abstract: Comets are the most active around their perigees. The increased outgassing can lead to a coma thick enough to effectively absorb the solar EUV radiation, which engenders a self-shielding comet nucleus and inner layers of the ionosphere. This effect of self-shielding can be calculated by the attenuation of the sunlight according to the Beer-Lambert law. Here we focus on the perihelion of comet 67P/Churyumov-Gerasimenko, the target comet of the ESA Rosetta mission. We calculate attenuated photoionization frequencies and implement these into an ionospheric model constructed in a recent project work (by the same author). The ionization frequencies and ion number densities are calculated as a function of cometocentric distance and compared with the latest published peer-reviewed article by Heritier et al. (2017). Overall, the agreement is fairly good. The most significant difference is the discrepancy of number densities of O2 ions, which is higher in our model by nearly an order of magnitude. This discrepancy is attributed to the fact that Heritier et al (2017) only considered charge transfer processes for the formation of O2+, while we identify photoionization of O2 as the main production mechanism.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)