Influence of Nitrocarburization on Thermo-Mechanical Fatigue Properties : Material Characterization of Ductile Cast Iron for Exhaust Components

University essay from Karlstads universitet/Fakulteten för hälsa, natur- och teknikvetenskap (from 2013)

Abstract: The large number of vehicles operating on the roads cause high emissions and consequently a negative effect on the environment. When developing and optimizing internal combustion engines, certain requirements must be considered, which are environmental regulations, reduced fuel consumption and increased specific power. In order to meet these demands, an increase of the engine combustion pressure will occur usually accompanied with a temperature increase. During start-up and shut-down of an engine, it is subjected to cyclic thermo-mechanical fatigue (TMF) loads. The turbo manifold and exhaust manifolds connected to the engine is also subjected to these thermo-mechanical fatigue loads and thereby exposed to alternating tensile and compression loads. As these TMF loads will increase in the near future due to the development and optimization of internal combustion engines, it is important to understand the limitations of the material for these loads. In collaboration with Scania CV AB in Södertälje, this thesis covers the investigation of influence of nitrocarburizing (NC) on TMF properties of three ductile irons (DCI) labelled HiSi, SiMo51 and SiMo1000 intended to be used for components in the exhaust system. Nitrocarburizing is a thermo-chemical process where nitrogen and carbon diffuses from the process medium into the surface zone of a ferrous metal. The purpose of the NC is to increase the wear properties in contact areas between different parts. The oxidation with and without nitrocarburizing are studied both after isothermal and stress free oxidation tests at 780 °C and after TMF loads with combined cyclic variation of mechanical and thermal loads. In addition, the properties such as hardness, defects, porosity, microstructure, composition of both the materials and of the oxide layer have been investigated. For SiMo1000+NC cracks formed during nitrocarburizing were positioned parallel to the surface edge in the diffusion zone and consequently an increased diffusion of nitrogen into the material, i.e. deeper diffusion depth. SiMo1000+NC showed highest hardness, highest compressive residual stresses and thickest oxide layer. SiMo1000 showed highest resistance against oxidation due to the protective aluminum oxide layer. Oxide crack initiations after thermo-mechanical tests with a protective silicon oxide layer around the cracks for HiSi and SiMo51 and a protective aluminum oxide layer around the cracks for SiMo1000. In materials with nitrocarburizing, these protective layers of either silicon oxide or aluminum oxide were more distributed into the material. In SiMo1000+NC, crack initiations were not oxidized.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)