Forecast Comparison of Models Based on SARIMA and the Kalman Filter for Inflation

University essay from Uppsala universitet/Statistiska institutionen


Inflation is one of the most important macroeconomic variables. It is vital that policy makers receive accurate forecasts of inflation so that they can adjust their monetary policy to attain stability in the economy which has been shown to lead to economic growth. The purpose of this study is to model inflation and evaluate if applying the Kalman filter to SARIMA models lead to higher forecast accuracy compared to just using the SARIMA model. The Box-Jenkins approach to SARIMA modelling is used to obtain well-fitted SARIMA models and then to use a subset of observations to estimate a SARIMA model on which the Kalman filter is applied for the rest of the observations. These models are identified and then estimated with the use of monthly inflation for Luxembourg, Mexico, Portugal and Switzerland with the target to use them for forecasting. The accuracy of the forecasts are then evaluated with the error measures mean squared error (MSE), mean average deviation (MAD), mean average percentage error (MAPE) and the statistic Theil's U. For all countries these measures indicate that the Kalman filtered model yield more accurate forecasts. The significance of these differences are then evaluated with the Diebold-Mariano test for which only the difference in forecast accuracy of Swiss inflation is proven significant. Thus, applying the Kalman filter to SARIMA models with the target to obtain forecasts of monthly inflation seem to lead to higher or at least not lower predictive accuracy for the monthly inflation of these countries.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)