The impact of connection stiffness on the global structural behavior in a CLT building : A combined experimental-numerical study

University essay from Linnéuniversitetet/Institutionen för byggteknik (BY)

Abstract: Cross Laminated Timber (CLT) has in recent years become a more important building material. This means that the demand for accurate calculation methods in building standards such as Eurocode 5 has increased. There is limited knowledge about the connections in CLT buildings which is an important part of a CLT structure. This thesis was therefore focused on investigating a wall-floor-wall type connection commonly found in platform type buildings.  An experimental and numerical study on typical wall-floor-wall connections was carried out in this thesis. In the experimental part 60 tests with 8 different configurations were conducted to investigate the influence of different parameters on the connection, moment capacity and rotational stiffness. During the tests the deformation of the specimens under four load levels were investigated. Compression tests were also performed on the specimens to determine the compressive strength and stiffness of the elements. In the numerical part two different models for the connection were created. One simplified model with rotational springs and one more complex model with compression springs. With these models the influence from the number of stories, span and thickness of the wall on the global behavior of a structure was investigated.  The result from this thesis shows that there is both moment capacity and rotational stiffness in the wall-floor-wall type connection that can be utilized in the design phase of a structure. This was proven by both the experimental and the numerical study. The parameters that influence the behavior of the connection most were the load level applied on the wall and the wall thickness. The model created in the numerical study showed great potential regarding the replication of the connection behavior observed in the experimental study.  

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)