Time-Resolved Adaptive Finite Element Simulations for Building Aerodynamics : A proof of concept on minimal computational resources

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: The effect of building geometry on the wind environment of cities is such that it can cause problems like wind danger, discomfort and poor ventilation of airborne pollutants. Computational fluid dynamics (CFD) can play a role in assessing changes in wind environment caused by building projects before realisation at little cost. However, the current state-of-the-art methods, RANS and LES, force a steep trade-off between accuracy and computational cost, and neither method is truly predictive. Time-resolved adaptive direct finite element simulation (DFS) is a method for CFD that is predictive and automatically optimises the mesh for a goal quantity, making it both efficient and accurate. In this thesis, DFS was implemented in FEniCS and used on basic validation cases to provide a proof of concept for the use of this method in the building aerodynamics, on resources freely available to anyone. The results show that the method is accurate to within 10% of the validation data with respect to the goal quantity. Visually, the expected flow features are clearly identifiable. DFS was successfully applied to a relatively complicated building geometry, with a total computation time of about 120 core-hours. We conclude that DFS has significant potential as a method for evaluating urban wind environments. Furthermore, because of its ease of use and lack of parameters, DFS can play an important role in helping architects, designers and students understand the effect of urban geometries on the wind environment. This report provides a basis for further research on DFS for building aerodynamics, as validation on more diverse urban geometries is still necessary. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)