Feasibility study of an EV management system to provide Vehicle-to-Building considering battery degradation

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: The recent increase of electric cars adoption will inuence the electricity demand in the distributionnetworks which risks to be higher than the maximum power available in the grid, if not well planned. Forthis reason, it is on the DSOs and TSOs's interest to plan carefully coordinated charging of a bulk of EVsas well as assess the possibility of EVs acting as energy storages with the Vehicle-to-Grid (V2G) or Vehicleto-Building (V2B) capability. When parked and plugged into the electric grid, EVs will absorb energy andstore it, being also able to deliver electricity back to the grid/building (V2G/B system).This can be anoptimized process, performed by an aggregator, gathering multiple EVs that discharge the battery into thegrid at peak time and charge when there is low demand i.e. overnight and o-peak hours.Numerous studies have investigated the possibility of aggregating multiple EVs and optimizing theircharging and discharging schedules for peak load reduction or energy arbitrage with participation in theelectricity market. However, no study was found for optimizing a shared eet of EVs with daily reservationsfor dierent users trying to perform V2B. In this study an optimization modelling algorithm (mixed integerlinear problem - MILP) that manages the possible reservations of the shared eet of EVs, coordinates thecharging and discharging schedules, and provides V2B (Vehicle-to-Building), with the objective of minimizingenergy costs and accounting with battery ageing has been developed. A case study with real data for abuilding is carried out modelling dierent number of EVs for two dierent days in year 2017, one in Marchand other in June.Results show that the prots are higher for all cases when introducing V2B as compared to a no optimizationscenario: V2B with battery degradation (50 ore/kWh) has decreased daily variable electricity costsbetween 54 and 59% in March and 60 and 63% for June when compared without smart charging. Integrationof battery degradation cost in V2B applications is necessary and inuences signicantly the chargingand discharging strategies adopted by EV and nally the total daily costs: The total daily cost increaseby maximal 10% for the day in March and 13% for the day in June when comparing the scenario that hasstationary battery and uses only-charging model for EVs with the scenario applying V2B mode consideringa degradation cost of 80 ore/kWh.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)