Physics-Informed Deep Learning for System Identification of Autonomous Underwater Vehicles : A Lagrangian Neural Network Approach

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: In this thesis, we explore Lagrangian Neural Networks (LNNs) for system identification of Autonomous Underwater Vehicles (AUVs) with 6 degrees of freedom. One of the main challenges of AUVs is that they have limited wireless communication and navigation under water. AUVs operate under strict and uncertain conditions, where they need to be able to navigate and perform tasks in unknown ocean environments with limited and noisy sensor data. A crucial requirement for localization and adaptive control of AUVs is having an accurate and reliable model of the system’s nonlinear dynamics while taking into account the dynamic environment of the ocean. Most of these dynamics models do not incorporate data. The collection of data for AUVs is difficult, but necessary in order to have more flexibility in the model’s parameters due to the dynamic environment of the ocean. Yet, traditional system identification methods are still dominant today, despite the recent breakthroughs in Deep Learning. Therefore, in this thesis, we aim for a data-driven approach that embeds laws from physics in order to learn the state-space model of an AUV. More precisely, exploring the LNN framework for higher-dimensional systems. Furthermore, we also extend the LNN to account for non-conservative forces acting upon the system, such as damping and control inputs. The networks are trained to learn from simulated data of a second-order ordinary differential equation of an AUV. The trained model is evaluated by integrating paths from different initial states and comparing them to the true dynamics. The results yielded a model capable of predicting the output acceleration of the state space model but struggled in learning the direction of the forward movement with time. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)