Increased leaching of metals as a result of foundation work

University essay from KTH/Hållbar utveckling, miljövetenskap och teknik

Abstract: Heavy metal contamination in the environment is a global issue that is likely to increase in the future. This report investigates a construction area in which increased concentrations of the heavy metals cadmium, cobalt, copper, nickel and zinc and a decreased pH-value has been observed in the surface water recipient. The focus is on assessing contamination characteristics and identifying suitable remediation methods to avoid a river protected by environmental quality standards further downstream from getting contaminated. The bedrock in the area is sulphide containing and releases acidic leachate when oxidising, which is assumed to have occurred due to plane blasting and filling of residual rock. The contamination characteristics were assessed with the statistical methods modified double mass analysis and principal components analysis. A water balance was established to obtain the flowrates, discharge volumes and to determine the masses of the released metals in the surface water. Identification of suitable remediation methods was performed through a literature study of available remediation methods and using the findings of the assessments as basis. The results showed that there was a significant increase in metal concentrations and decrease in pH-value roughly around the same time as blasting and filling of residual rocks in the area was begun and that there were elevated levels of sulphide and sulphur, but they could not be specifically linked to any media. The yearly masses of metals released from the area into the surface water were between 77-98 % higher than allowed by the established guidelines. By separating the water assumed to carry the majority of the contaminants from the remaining natural water in the watershed, the volume that needs to be treated can be halved. As the contamination is so extensive, a mixture of remediation methods was proposed, including installing green roofs to decrease the runoff from the area, confining the crushed rock with bentonite and installing a filter for fast, efficient reduction. For long-term remediation, it is suggested to optimise the existing sedimentation basins and wetlands. The conclusions were that it will be very expensive to remediate the contamination, due to the extent and magnitude, and that handling sulphide containing bedrock for construction purposes should be legally regulated in order to avoid negative environmental and economic impacts. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)