Verification techniques in the context of event-trigged soft real-time systems

University essay from JTH, Data- och elektroteknik

Abstract: When exploring a verification approach for Komatsu Forest's control system regarding their forest machines (Valmet), the context of soft real-time systems is illuminated. Because of the nature of such context, the verification process is based on empirical corroboration of requirements fulfillment rather than being a formal proving process. After analysis of the literature with respect to the software testing field, two paradigms have been defined in order to highlight important concepts for soft real-time systems. The paradigms are based on an abstract stimuli/response model, which conceptualize a system with inputs and output. Since the system is perceived as a black box, its internal details are hidden and thus focus is placed on a more abstract level. The first paradigm, the “input data paradigm”, is concerned about what data to input to the system. The second paradigm, the “input data mechanism paradigm” is concerned about how the data is sent, i.e. the actual input mechanism is focused. By specifying different dimensions associated with each paradigm, it is possible to define their unique characteristics. The advantage of this kind of theoretical construction is that each paradigm creates an unique sub-field with its own problems and techniques. The problems defined for this thesis is primarily focused on the input data mechanism paradigm, where devised dimensions are applied. New verification techniques are deduced and analyzed based on general software testing principles. Based on the constructed theory, a test system architecture for the control system is developed. Finally, an implementation is constructed based on the architecture and a practical scenario. Its automation capability is then assessed. The practical context for the thesis is a new simulator under development. It is based upon LabVIEW and PXI technology and handles over 200 I/O. Real machine components are connected to the environment, together with artificial components that simulate the engine, hydraulic systems and a forest. Additionally, physical control sticks and buttons are connected to the simulator to enable user testing of the machine being simulated. The results associated with the thesis is first of all that usable verification techniques were deduced. Generally speaking, some of these techniques are scalable and are possible to apply for an entire system, while other techniques may be appropriate for selected subsets that needs extra attention. Secondly, an architecture for an automated test system based on a selection of techniques has been constructed for the control system. Last but not least, as a result of this, an implementation of a general test system has been possible and successful. The implemented test system is based on both C# and LabVIEW. What remains regarding the implementation is primarily to extend the system to include the full scope of features described in the architecture and to enable result analysis.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)