Development of a Simulation Platform Addressing the Digitalization of the Stockholm Healthcare System

University essay from KTH/Skolan för kemi, bioteknologi och hälsa (CBH)

Abstract: As e-Health solutions start being integrated into the healthcare system in Stockholm County, the possibility of moving monitored patients out of the hospitals and into their homes increases. Such a change in the healthcare system could require a major redistribution of resources in order to meet possible changes in resource demands. Simulations can be used in order to understand how the healthcare system needs to adapt to handle the relocation of monitored patients. In this thesis project, a simulation platform has been designed and developed to address possible questions posed by this redesign of the healthcare system. By conducting a literary study, it was found that a discrete event- and agent based- hybrid simulation architecture could address the complexity required for such a large simulation environment by simulating across different abstraction levels. The agent based simulation component of the architecture models resources such as nurses, doctors, and patients as agents. A patient agent has a statechart which allows the patient to move between situational states and require interventions depending on a developed illness progression logic and routines. Interventions are modeled as event workflows in the discrete event simulation architecture. These cover most of the relevant interventions in a home monitored patient's life, such as nurse home visits and doctor video consultations. A communication protocol has been defined which will allow this model to communicate with a healthcare facility model. The platform implements a user interface for changing relevant input parameters, such as the amount of patients or doctors, in order to simulate different scenarios. Therefore the provided framework reduces the need for any major reprogramming between model runs. Outputs provided by simulation runs give relevant insights on patient resource usage and logistics management. A method for automatic generation of locations for patient homes and healthcare facilities on Geographic Information Systems open street maps has also been identified but not implemented. A validation process was conducted by allowing experts in the field to test the platform and give feedback on its validity and outputs. The simulation architecture provided by this thesis achieves the objective of modeling flows and resources in a further digitalized healthcare system in Stockholm County.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)