Two-dimensional Study of Blade Profiles for a Savonius Wind Turbine

University essay from Uppsala universitet/Elektricitetslära; Uppsala universitet/Elektricitetslära; Uppsala universitet/Elektricitetslära; Uppsala universitet/Elektricitetslära

Abstract: A Savonius wind turbine is a self-starting vertical axis rotor. It can be designed to be compact in size and also produces less noise which makes it suitable to integrate into urban spaces such as rooftops and sign-poles. These characteristics make it interesting from a sustainability point of view, especially when aiming to increase the decentralization of electricity production. This thesis aimed to investigate the aerodynamic performance of different two-bladed Savonius profiles by varying the blade arc angle and the overlap ratio. For evaluation, the dimensionless power coefficient and torque coefficient were investigated over different tip speed ratios. The study was conducted numerically with 2D simulations in Ansys Fluent. The partial differential equations describing the characteristics of the flow, including the flow turbulence effects, were solved with the Reynolds-average Navier Stokes in combination with the k-omega SST model. A validation was performed by comparing data from simulated and experimental tests of a semi-circular profile and a Benesh profile. The investigation of the blade arc angle and overlap ratio was performed on a Modified Bach profile. The profile with a blade arc angle of 130 degrees and an overlap ratio of 0.56 generated a maximal power coefficient of 0.267 at a tip speed ratio of 0.9. This blade configuration generated the best performance of all conducted simulations in this project. However, this project contained uncertainties since simulations can never be an exact description of reality. The project was also limited by the computational power available. Nevertheless, according to the conducted simulations, it was observed that a higher blade arc angle and a larger overlap ratio seem to generate higher efficiency.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)