Simulation of Reactor Transient and Design Criteria of Sodium-cooled Fast Reactors

University essay from Tillämpad kärnfysik

Abstract: The need for energy is growing in the world and the market of nuclear power is now once more expanding. Some issues of the current light-water reactors can be solved by the next generation of nuclear power, Generation IV, where sodium-cooled reactors are one of the candidates. Phénix was a French prototype sodium-cooled reactor, which is seen as a success. Although it did encounter an earlier unexperienced phenomenon, A.U.R.N., in which a negative reactivity transient followed by an oscillating behavior forced an automatic emergency shutdown of the reactor. This phenomenon lead to a lot of downtime of the reactor and is still unsolved. However, the most probable cause of the transients is radial movements of the core, referred to as core-flowering. This study has investigated the available documentation of the A.U.R.N. events. A simplified model of core-flowering was also created in order to simulate how radial expansion affects the reactivity of a sodium-cooled core. Serpent, which is a Monte-Carlo based simulation code, was chosen as calculation tool. Furthermore, a model of the Phénix core was successfully created and partly validated. The model of the core has a k_eff = 1.00298 and a neutron flux of (8.43+-0.02)!10^15 neutrons/cm^2 at normal state. The result obtained from the simulations shows that an expansion of the core radius decreases the reactivity. A linear approximation of the result gave the relation: change in k_eff/core extension = - 60 pcm/mm. This value corresponds remarkably well to the around - 60 pcm/mm that was obtained from the dedicated core-flowering experiments in Phénix made by the CEA. Core-flowering can recreate similar signals to those registered during the A.U.R.N. events, though the absence of trace of core movements in Phénix speaks against this. However, if core-flowering is the sought answer, it can be avoided by design. The equipment that registered the A.U.R.N. events have proved to be insensitive to noise. Though, the high amplitude of the transients and their rapidness have made some researcher believe that the events are a combination of interference in the equipment of Phénix and a mechanical phenomenon. Regardless, the origin of A.U.R.N. seems to be bound to some specific parameter of Phénix due to the fact that the transients only have occurred in this reactor. A safety analysis made by an expert committee, appointed by CEA, showed that the A.U.R.N. events are not a threat to the safety of Phénix. However, the origin of these negative transients has to be found before any construction of a commercial size sodium-cooled fast reactor can begin. Thus, further research is needed.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)