Identification of elements and molecules in the spectra of an M dwarf star using high resolution infrared spectroscopy.

University essay from Uppsala universitet/Institutionen för fysik och astronomi

Abstract: M dwarfs are abundant and long-lived stellar objects. The formation of planets around stars in stellar systems is believed to be metallicity dependent. To determine the metallicity with synthetic spectrum analysis, the elements producing the absorption lines ofthe spectra first have to be identified. The aim of this thesis is to identify and list the elements or molecules that produce the absorption lines in the spectra of Barnard's star. This thesis was done at the Division for Astronomy and Space Physics at Uppsala University. High resolution infrared spectral data recorded in the J band 1.1–1.4 μm was downloaded from the CRIRES-POP database. The data had to be wavelength corrected due to the effects of Doppler shift. A modified IDL program was used to read the data files,normalize the flux to unity and plot the spectra. This procedure was also done with the telluric spectra using data from a solar flux atlas. The IDL program plotted the normalized spectra together in the same plot. With this procedure the absorption features originating from the earth’s atmosphere could be identified and discarded. The analysis of the spectral lines resulted in wavelength values which were tested against the VALD3 database to determine what elements were possibly responsible for the absorption features. The results are presented in a line list. It can be used with other software programs to determine the metallicity. The identified elements and molecules agrees in part with earlier measurements of stellar spectra from M dwarf stars except for a number of lines where no matching elements were found in the VALD3 database. A line list with possible elements in the photosphere of Barnard’s star can be constructed from the spectra using high-resolution infrared spectroscopy.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)