Enhancing interoperability for IoT based smart manufacturing : An analytical study of interoperability issues and case study

University essay from KTH/Kommunikationssystem, CoS

Abstract: In the era of Industry 4.0, the Internet-of-Things (IoT) plays the driving role comparable to steam power in the first industrial revolution. IoT provides the potential to combine machine-to-machine (M2M) interaction and real time data collection within the field of manufacturing. Therefore, the adoption of IoT in industry enhances dynamic optimization, control and data-driven decision making. However, the domain suffers due to interoperability issues, with massive numbers of IoT devices connecting to the internet despite the absence of communication standards upon. Heterogeneity is pervasive in IoT ranging from the low levels (device connectivity, network connectivity, communication protocols) to high levels (services, applications, and platforms). The project investigates the current state of industrial IoT (IIoT) ecosystem, to draw a comprehensive understanding on interoperability challenges and current solutions in supporting of IoT-based smart manufacturing. Based upon a literature review, IIoT interoperability issues were classified into four levels: technical, syntactical, semantic, and organizational level interoperability. Regarding each level of interoperability, the current solutions that addressing interoperability were grouped and analyzed. Nine reference architectures were compared in the context of supporting industrial interoperability. Based on the analysis, interoperability research trends and challenges were identified. FIWARE Generic Enablers (FIWARE GEs) were identified as a possible solution in supporting interoperability for manufacturing applications. FIWARE GEs were evaluated with a scenario-based Method for Evaluating Middleware Architectures (MEMS).  Nine key scenarios were identified in order to evaluate the interoperability attribute of FIWARE GEs. A smart manufacturing use case was prototyped and a test bed adopting FIWARE Orion Context Broker as its main component was designed. The evaluation shows that FIWARE GEs meet eight out of nine key scenarios’ requirements. These results show that FIWARE GEs have the ability to enhance industrial IoT interoperability for a smart manufacturing use case. The overall performance of FIWARE GEs was also evaluated from the perspectives of CPU usage, network traffic, and request execution time. Different request loads were simulated and tested in our testbed. The results show an acceptable performance in terms with a maximum CPU usage (on a Macbook Pro (2018) with a 2.3 GHz Intel Core i5 processor) of less than 25% with a load of 1000 devices, and an average execution time of less than 5 seconds for 500 devices to publish their measurements under the prototyped implementation.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)