Real-Time Space-Time Adaptive Processing on the STI CELL Multiprocessor

University essay from Linköpings universitet/Institutionen för systemteknik

Abstract: Space-Time Adaptive Processing (STAP) has been widely used in modern radar systems such as Ground Moving Target Indication (GMTI) systems in order to suppress jamming and interference. However, the high performance comes at a price of higher computational complexity, which requires extensive powerful hardware. The new STI Cell Broadband Engine (CBE) processor combines PowerPC core augmented with eight streamlined high-performance SIMD processing engine offers an opportunity to implement the STAP baseband signal processing without any full custom hardware. This paper presents the implementation of an STAP baseband signal processing flow on the state-of-the-art STI CELL multiprocessor, which enables the concept of Software-Defined Radar (SDR). The potential of the Cell BE processor is studied so that kernel subroutine such as QR decomposition, Fast Fourier Transform (FFT), and FIR filtering of STAP are mapped to the SPE co-processors of Cell BE processor with variety of architectural specific optimization techniques. This report starts with an overview of airborne radar technique and then the standard, specifically the third-order Doppler-factored STAP are introduced. Next, it goes with the thorough description of Cell BE architecture, its programming tool chain and parallel programming methods for Cell BE. In later chapter, how the STAP is implemented on the Cell BE processor is discussed and the simulation results are presented. Furthermore, based on the result of earlier benchmarking, an optimized task partition and scheduling method is proposed to improve the overall performance.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)