Compact 3D Microscopy for Planetary Exploration

University essay from KTH/Rymdteknik

Author: Gustav Pettersson; [2018]

Keywords: ;

Abstract: We propose using grain-of-sand-scale microscopy (1-micrometre resolution) to study the microstructure and composition of planetary material in a fast, in-situ, solid-state device. We have constructed a small and light prototype instrument (100 grams, 0.3 litres) from commercial-off-the-shelf components, targeted for applications in miniaturised robotic exploration, mounted to a robotic arm, or used as a hand-held tool. This microscope employs a programmable LCD aperture to virtually record multiple perspectives, and a dome studded with LEDs surrounding the sample to control illumination. With this prototype microscope we have captured rich and intuitive raw images for a human observer, and reconstructed 3D surfaces and photometric properties of the samples. The broad applicability of this method is demonstrated by integration into a novel exploration concept in which sensor projectiles are launched from a rover into inaccessible environments. Our microscope can there deliver 3D-maps of the surfaces they encounter and extract relevant morphological properties. Our prototype device is evaluated using a range of lunar and planetary simulants. We argue that this microscope delivers large scientific value on its own, and context for other instruments, with small resource requirements similar to those of a camera alone.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)