Hydrothermally carbonized wood as a component in biobased material for 3D-printing

University essay from KTH/Skolan för kemi, bioteknologi och hälsa (CBH)

Abstract: Consumers put higher demands on low environmental impact from the products they use, and the materials they consist of. As a result, more research is being made on finding environmentally friendly production techniques and materials. Hydrothermal carbonization (HTC) is a relatively environmentally friendly method that has been used in this study. Cellulose and pine, the latter, one sample with and one without bark, were carbonized at 220 °C and 240 °C for two hours. This generated solid carbon products that could be used in composites with the biopolymer Polylactide (PLA). The composites were thereafter extruded as filaments and used for 3D printing. X-ray powder diffraction (XRD), Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) showed that HTC of all precursors generated an amorphous carbon material, with carbon microspheres and increased aromaticity. Three different composites were produced from PLA and 0.1 wt% of the solid carbon products from all three precursors carbonized at 240 °C. Composites were also made from PLA and 1 wt% non-carbonized pine with bark, and 1 wt% of pine with bark carbonized at 240 °C. Filaments were extruded from neat PLA, as well as the composites of 0.1 wt% carbonized cellulose and 0.1 wt% carbonized pine with bark mentioned above. The filaments were used to 3D print six dog bones per filament according to the ISO standard ISO 527-2 1BA. There was one instance of clogging for each filament from the composite materials, but it was easily solved. No mechanical tests could be performed, although the 3D printed models’ physical properties were visually observed, and no deficiencies were found. Both extrusion and 3D printing were successful.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)