Degradation of Microplastic Residuals in Water by Visible Light Photocatalysis

University essay from KTH/Hållbar utveckling, miljövetenskap och teknik

Abstract: Microplastic (MP) pollution has recently been recognized as a threat to the biosphere including humans due to its widespread distribution, persistent nature and infinitesimal size. This study focused on the solid phase degradation of microplastic residues (particularly low density polyethylene, LDPE) in water through heterogeneous photocatalysis process by designed photocatalysts of zinc oxide nanorods (ZnO NRs) and platinum nanoparticles deposited on zincoxide nanorods (Pt NPs-ZnO NRs) under visible light irradiation. These photocatalysts were assessed following standard protocol (ISP 10678: 2010), and characterized using SEM, EDX andoptical spectroscopies (UV-VIS and PL). Deposition of Pt-NPs on ZnO NRs for certain minutes has been found optimum that enhanced the photodegradation process about 38% under UV irradiation and 16.5% under visible light irradiation by improving of both electrons-holes pair separation process and visible light absorption. Photocatalytic degradation of LDPE films was confirmed by FTIR spectroscopy, dynamic mechanical analyzer (DMA), optical and electron microscopes. When LDPE film irradiated in presence of Pt-ZnO, degradation was found quicker than ZnO alone of similar concentration which exhibited formation of a large number of wrinkles, cracks and cavities on the film surface. Dynamic mechanical analyzer (DMA) test indicated stiffness and embrittlement of exposed LDPE films in presence of photocatalysts. Thus, the present work provides a new insight about modified catalysts for the degradation of microplastics in water using visible light.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)