Predicting comfort in autonomous driving from vibration measurements using machine learning models

University essay from KTH/Fordonsdynamik

Abstract: Highly automated driving is approaching reality at a high speed. BMW is planningto put its first autonomous driving vehicle on the road already by 2021. The path torealising this new technology is however, full of challenges. Not only the transverseand longitudinal dynamic vehicle motion play an important role in experiencedcomfort but also the requirements and expectations of the occupants regarding thevertical dynamic vibration behaviour. Especially during long trips on the motorwaywhere the so far active driver becomes the chauffeured passenger, who reads, worksor sleeps in his newly gained time. These new use-cases create new requirements forthe future design of driving comfort which are yet to be fully discovered.This work was carried out at the BMW headquarters and had the aim to usedifferent machine learning models to investigate and identify patterns between thesubjective comfort values reported by participants in a study, on a comfort scale of 1-7 and the mechanical vibrations that they experienced, measured inm/s2. The datawas collected in a previous independent study and statistical methods were used toinsure the quality of the data. A comparison of the ISO 2631-1 comfort ratings andthe study’s findings is done to understand the need for a more sophisticated model to predict comfort in autonomous driving. The work continued by investigating different dimensionality reduction methods and their influence on the performance of the models. The process used to build, optimise and validate neural networks and other models is included in the method chapter and the results are presented. The work ends with a discussion of both the prediction results and the modelsre-usability. The machine learning models investigated in this thesis have shown great po-tential for detecting complex pattern that link feelings and thoughts to mechanical variables. The models were able to predict the correct level of comfort with up to50% precision when trying to predict 6 or 7 levels of comfort. When divided into high versus low discomfort, i.e. predicting one of two comfort levels, the models were able to achieve a precision of up to 75.4%.Excluded from this thesis is the study of differences in attentive vs inattentive state when being driven in an autonomous driving vehicle. It became clear shortly before the start of this work, that the experiment that yielded the data used for it failed to find a statistically significant difference between the two states.  

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)