Machine Learning Based Beam Tracking in mmWave Systems

University essay from KTH/Skolan för elektroteknik och datavetenskap (EECS)

Abstract: The demand for high data rates communication and scarcity of spectrum in existing microwave bands has been the key aspect in 5G. To fulfill these demands, the millimeter wave (mmWave) with large bandwidths has been proposed to enhance the efficiency and the stability of the 5G network. In mmWave communication, the concentration of the transmission signal from the antenna is conducted by beamforming and beam tracking. However, state-of-art methods in beam tracking lead to high resource consumption. To address this problem, we develop 2 machine-learning-based solutions for overhead reduction. In this paper, a scenario configuration simulator is proposed as the data collection approach. Several LSTM based time series prediction models are trained for experiments. Since the overhead is reduced by decreasing the number of sweeping beams in solutions, multiple data imputation methods are proposed to improve the performance of the solution. These methods are based on Multiple Imputation by Chained Equations (MICE) and generative adversarial networks. Both qualitative and quantitative experimental results on several types of datasets demonstrate the efficacy of our solution. 

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)