A Study of Low-Power Wide-Area Networks and an In-Depth Study of the LoRaWAN Standard

University essay from KTH/Maskinkonstruktion (Inst.)

Abstract: Low Power Wide Area Networks (LPWAN) are able to combine long range communication with a low energy consumption sacrificing performance in terms of bit rate and message frequency. This thesis presents a general evaluation of the LPWAN characteristics and a description of the LPWAN protocols LoRaWAN, SigFox and NB-IoT. It also covers a method to evaluate if a LPWAN technology would be a suitable choice of communication technology for a certain use case. Lastly, it covers the implementation of LoRaWAN on a connected electromechanical lock and investigates in the real life performance of the lock by using eight nodes in two case studies involving four locations each. The lock was evaluated from how often it was able to send a heartbeat (a status message), how reliable the communication was, what latency a user could expect and how much energy a data transmission required. Two of the eight nodes were placed in a deep indoor environment. One of them, located 0.794 km from a gateway was able transmit every 150th second. The other one located 1.85 km from a gateway was not able to successfully deliver any packets at all. Five nodes were able to transmit most heartbeats within 10 seconds. The Packet Delivery Ratio (PDR) was below 90% for all locations except for one. In this location, the node was placed close to a large window and managed to communicate with a gateway 3.22 km away with a PDR of 97% and almost exclusively with less than 10 seconds between transmission. The results in this thesis show the potential in LoRaWAN but highlights how dependent the performance will be of the placement of the lock.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)