Selection and characterization of bispecific ADAPT molecules for enhanced biodistribution in cancer therapy

University essay from KTH/Skolan för kemi, bioteknologi och hälsa (CBH)

Abstract: Established biopharmaceuticals such as antibodies and derivatives thereof are relatively large. In cancer therapy, this creates a steep drug concentration gradient within tumors, leaving cells far from blood vessels effectively untreated. Continuous pseudo treatments should foster the development of drug resistance and might lead to eventual disease relapse. Drug concentration gradients can be operationalized as tissue penetration efficiencies, which are functions of molecular size. However, small particles are also subject to potent renal clearance, collapsing the therapeutic window beyond clinical applications. In this master’s thesis, spatial bispecificity was engineered into a single albumin binding domain (ABD). Resulting ABD derived affinity proteins (ADAPTs) are saved from urinary excretion by the grace of HSA, but in the more static microenvironment of tumors, following HSA dissociation, they are capable of tissue penetration efficiencies bestowed only upon smaller particles. To this end, phage display was used to raise ADAPTs against the cancer associated proteins human epidermal growth factor receptor 2 (HER2) and carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6), but also the inflammation marker C-reactive protein (CRP). Via Sanger sequencing, 9 variants were picked for protein production and characterization, among which two spatially bispecific binders were found. ADAPTs were also evaluated for aggregation tendencies, structural conformity to library design, and thermal stability. One ADAPT, binding HER2, passed all tests of initial characterizations. Deep sequencing was used to analyze selection output, from which many more binders should be screened in future experiments.

  AT THIS PAGE YOU CAN DOWNLOAD THE WHOLE ESSAY. (follow the link to the next page)